Кислородный коктейль: системы нейтрализации

Для эффективной работы систем нейтрализации бензинового двигателя нужны особые условия. Каких жертв требует их обеспечение?.

На моторы уже давно накинули поводок экологических норм, и с каждым годом ошейник затягивают все туже. Во что превратилась жизнь современного дизеля, мы рассказывали в ЗР, 2014, № 1. Система нейтрализации отработавших газов бензинового мотора проще, но диктует свои условия игры постоянно.

ВЕЗДЕ ПОСПЕЛ

При всех различиях бензинового и дизельного моторов у них есть общий эковраг — выбросы оксидов азота (NO x). Они образуются в камере сгорания при высокой температуре и избытке воздуха в топливовоздушной смеси. В основном этот эффект снижают, совершенствуя конструкцию самого двигателя. Но все чаще одних конструктивных мер становится недостаточно, поэтому инженеры вынуждены применять решение для дизеля — систему рециркуляции отработавших газов (EGR), возвращающую часть их обратно на впуск. Это снижает количество кислорода в свежей топливовоздушной смеси и сбивает температуру сгорания в цилиндре. Конструктивно бензиновая система гораздо проще. Она состоит из управляющего клапана и канала отвода отработавших газов (ОГ).

Управляющий клапан EGR регулирует количество ОГ, идущих на впуск. Его работой заведует модуль управления двигателем. Залипание клапана в одном из открытых положений из-за нагара — самая распространенная неисправность. При этом в двигатель возвращаются большие порции ОГ с продуктами сгорания. Хотя ему прилично достается и при нормальной работе системы. Это очень хорошо видно по состоянию дроссельной заслонки, которая на некоторых моторах стоит слишком близко к трубке EGR. Уже к 30 000 км пробега на ней скапливаются масляные отложения и нагар. А если она еще и электронная, то рано или поздно из-за этого начнут плавать или даже зависать обороты.

За индикацию неисправностей EGR отвечает лампа Check. «Мозг» двигателя следит за системой с помощью датчиков. Чаще всего это лямбда-зонд и датчик абсолютного давления во впускном коллекторе. Иногда применяют варианты с дополнительными наблюдателями — датчиком положения клапана EGR и датчиком давления отработавших газов в трубке.

ПОСТФАКТУМ

В выпускной системе с оксидами азота борется трехкомпонентный нейтрализатор. Такое название он получил потому, что преобразует в нетоксичные вещества еще и угарный газ (СО) с углеводородом (СН). Состоит он из монолитного носителя с сотами, каналы которых покрыты активным слоем благородных металлов (платина, родий и палладий). Они выступают катализаторами химических реакций окисления и восстановления вредных выбросов. Для начала реакций нужен нагрев нейтрализатора до 250–550 ºC. Именно поэтому его устанавливают как можно ближе к двигателю.

Для преобразования СО и СН двигатель должен работать на обедненной смеси, чтобы в ОГ было достаточное количество остаточного кислорода. В этих условиях СО и СН окисляются в безвредный углекислый газ и воду. Преобразование NO x требует, напротив, обогащенной смеси. Под действием СО оксиды азота восстанавливаются до безвредного азота. При реакции высвобождается кислород, которого хватает для окисления СО и СН. Эффективная работа нейтрализатора достигается тонкой регулировкой состава топливовоздушной смеси на грани стехиометрического показателя (коэффициент избытка воздуха λ равен единице): от чуть бедной до слегка обогащенной. Для этого в выхлопную систему встроены датчики кислорода (лямбда-зонды). Первый, перед нейтрализатором, следит за содержанием остаточного кислорода в ОГ. По его показаниям модуль управления двигателем корректирует впрыск топлива. Второй датчик находится за нейтрализатором и нужен только для определения эффективности его работы.

АНАТОМИЯ ЗЛА

Датчики кислорода бывают двух видов: триггерный (скачкообразный сигнал) и широкополосный. Чувствительный элемент триггерного состоит из керамического корпуса (двуокись циркония), покрытого снаружи и изнутри электродами. Они изготовлены напылением слоя газопроницаемой платины и могут проводить ионы кислорода при температуре от 300 ºC. Чтобы достичь ее быстрее, в датчик встроен нагреватель. Внешняя часть элемента находится в потоке отработавших газов, а внутренняя — в среде окружающего воздуха.

Между электродами возникает разность потенциалов: в зависимости от доли кислорода в ОГ, от 0,1 В (бедная смесь) до 0,9 В (богатая смесь). При переходе от богатой смеси к бедной и наоборот датчик передает скачок сигнала. По нему ЭБУ и корректирует впрыск топлива. За счет этого он постоянно регулирует смесь для эффективной работы нейтрализатора.

Широкополосный датчик преобразует содержание кислорода в ОГ в значение тока. Он может измерять коэффициент избытка воздуха λ в диапазоне 0,7–4,0. При этом его сигнал непрерывный и более четкий. Это позволяет использовать его в дизельном моторе, который работает на очень бедных смесях. Датчик состоит из гальванического элемента Нернста и элемента кислородной накачки. Оба изготовлены из двуокиси циркония с напылением пористой платины. Между элементами есть диффузионный зазор (область измерения), в который поступают ОГ. Элемент Нернста устроен и работает как триггерный кислородный датчик, выдавая сигнал напряжения. По нему насосная ячейка управляет подачей кислорода в область измерения так, чтобы коэффициент избытка воздуха в ней всегда был равен единице. При работе двигателя на бедных смесях (большое содержание кислорода) насосный элемент откачивает ионы кислорода из области измерения. При работе двигателя на богатых смесях (низкое содержание кислорода) — наоборот. При этом элемент потребляет ток: положительный при откачке и отрицательный при накачке. По этой величине блок управления двигателем и определяет коэффициент избытка воздуха в ОГ.

Как правило, перед нейтрализатором ставят триггерный датчик. Но когда нужно очень точное регулирование смеси, все чаще используют широкополосный. А вот за нейтрализатором всегда идет более простой триггерный, так как он следит только за его работой и на двигатель не влияет.

ОТПЕЧАТКИ ПАЛЬЦЕВ

Беда в том, что из-за переднего кислородного датчика работа бензинового двигателя постоянно зажата в очень узкие рамки. А при его неисправности возможна нештатная работа мотора — от ярко выраженного перехода в аварийный режим и потери динамики, как на французских двигателях, до дерганья при разгоне на японских. При этом лампа Check загорается далеко не всегда. Благо, за выходными сигналами датчиков можно проследить с помощью компьютерной диагностики. Чаще всего срок их жизни сокращает некачественное топливо.

У обоих видов кислородных датчиков волнообразный выходной сигнал. У триггерного это колебания напряжения, а у широкополосного — направление тока: от положительного до отрицательного. Помимо не очень заметных различий в сигналах рабочего и неисправного датчиков бывают и явные. К примеру, зависание показаний на постоянном уровне вообще за границами измерений. Или позднее начало работы из-за неисправного подогрева. Последний проверяют простым прозваниванием его контактов на разрыв цепи. В основном неправильный сигнал можно увидеть на стоящей машине, к примеру поиграв оборотами двигателя. Но иногда не обойтись без дорожного теста. Дополнительно путем сравнения показаний переднего и заднего датчиков удается определить состояние нейтрализатора. Если сигналы обоих похожи, он неисправен. При его нормальной работе концентрация кислорода на выходе должна быть постоянно низкой, без перехода на бедную смесь и обратно, то есть без скачков сигнала.

ДВОЕ ИЗ ЛАРЦА

Все чаще для соблюдения жестких экологических норм в выхлопную систему встраивают второй трехкомпонентный нейтрализатор, уже без датчиков. Есть и более изощренный вариант, который воздействует на управление двигателем, — накопительный нейтрализатор. Служит он для дополнительного обезвреживания оксидов азота. Одна из таких систем стояла на 2-литровых моторах FSI концерна «Фольксваген».

Конструктивно накопительный нейтрализатор похож на трехкомпонентный, а по характеру работы напоминает дизельный сажевый фильтр. Дополнительно в активный слой нейтрализатора включен оксид бария, способный удерживать NO х и серу при температуре от 250 до 500 ºC. По мере его насыщения начинается двухэтапный процесс регенерации. На первом этапе двигатель переходит на обогащенные смеси, при этом повышается и температура ОГ. В таких условиях NO х распадаются и преобразуются в безвредный азот. Для выжигания серы нужна еще более высокая температура ОГ, свыше 650 ºC. Этот этап начинается при сильном сокращении интервалов регенерации NO х. Для этого двигатель переходит на еще более богатую смесь с поздним зажиганием.

В систему включены датчик температуры ОГ перед нейтрализатором, а после него — датчик NO х со своим отдельным блоком управления. Первый нужен для контроля регенерации и защиты системы от перегрева. А датчик NO х используется для определения насыщения нейтрализатора. Работает он по принципу широкополосного кислородного датчика.

Накопительный нейтрализатор гораздо меньше вмешивается в работу двигателя, чем дизельный сажевый фильтр. Конечно же, как и все виды нейтрализаторов, он рано или поздно забивается. Продлить ему жизнь может качественное топливо с низким содержанием серы и периодическая езда на больших оборотах двигателя под нагрузкой.

Экология, безусловно, важна. Но цена соблюдения ее требований очень высока. Слишком уж сильно зависит управление двигателем от работы систем нейтрализации. А судя по напору экологов, дальше станет еще труднее.

НА «ТЫ»

Без компьютерной диагностики очень сложно выявить неисправность в системе нейтрализации. Обычный мультиметр не сможет дать нормальной картины сигнала, а осциллограф есть далеко не у всех. Если все же возникли подозрения, то можно ограничиться внешним осмотром и прозвонить проводку на целостность. Повреждений ее или выхлопной системы еще никто не отменял. Если последняя «сечет» поблизости от кислородных датчиков, то именно подсасываемый воздух может искажать их показания. Нередки случаи, когда проблема кроется в креплении датчиков.

Замена элементов системы с трехкомпонентным нейтрализатором не требует программирования. Важно помнить правила обращения с ржавым и закисшим крепежом: недолго обломить сам датчик либо слизать резьбу.

В системах с накопительных нейтрализатором возможна компоновка с повязанными друг на друга датчиком NO х и модулем его управления. Последний, скорее всего, придется программировать.

Ну а в повседневной жизни не стоит забывать, что даже при нормальной работе нейтрализаторы нагреваются до 600 ºC. Когда паркуетесь, обращайте внимание, чтобы под машиной не оказалось ничего быстровоспламеняющегося.

БЕЗ ПРЕТЕНЗИЙ

За нейтрализацию вредных выбросов отвечают еще две системы, но уже без возможности влиять на управление двигателем: вентиляция топливного бака и вентиляция картерных газов.

Пары бензина токсичны и взрывоопасны. Они всегда есть в топливном баке. Система контроля предотвращает их попадание в атмосферу. Она забирает пары топлива из бака в абсорбер (фильтр с активированным углем). Из него при определенных режимах работы двигателя они попадают во впускную систему. К составным частям системы относятся крышка топливного бака и предохранительные клапаны, препятствующие вытеканию топлива при опрокидывании автомобиля.

Никакие поршневые кольца не способны полностью герметизировать камеру сгорания и предотвратить попадание отработавших газов в картер двигателя. Экологические нормы запрещают их выброс в атмосферу. Система вентиляции картерных газов возвращает их на впуск двигателя через магистрали и клапаны. Некоторые ее виды плохо отделяют от ОГ пары масла, и последние нещадно загрязняют впускную систему двигателя.

Фото: «За рулем»
Ошибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

Комментарии